SKOLKOVO School of Management

Normal view MARC view ISBD view

Crustal heat flow : a guide to measurement and modelling / G.R. Beardsmore, J.P. Cull.

By: Beardsmore, G. R. (Graeme Ross).
Contributor(s): Cull, J. P. (James Phillip).
Publisher: Cambridge, UK ; New York : Cambridge University Press, 2001Description: x, 324 p. : ill. ; 27 cm.ISBN: 0521792894; 9780521797030.Subject(s): Terrestrial heat flow -- Measurement | Earth (Planet) -- CrustDDC classification: 551.1/4 Online resources: Full-text here
Contents:
Machine generated contents note: PART ONE. TIE THERMAL STATE OF THE EARI'TH -- 1. Terrestrial Heat -- 1.1. The Origin of the Earth -- 1.2. The Present Thermal State of the Earth -- 1.3. Basic Heat Flow Terms -- 1.4. Units -- 1.5. IHeat Flow Resources -- 1.6. Summary -- 2. Heat Generation -- 2.1. Radiogenic lHeat -- 2.1.1. Heat Flow Provinces -- 2.1.2. Radiogenic Heat Generation from Well Logs -- 2.1.3. Seismic Correlations -- 2.2. Frictional Heating along Faults -- 2.3. Metamorphic Reactions -- 2.4. Summary -- PART TWO. MEASUREMENT TECHNIQUES -- 3. Thermal Gradient -- 3.1. Direct Measurement Techniques -- 3.1.1. Precision Temperature Logs -- 3.1.2. Deep-Water Probes -- 3.1.3. Borehole Convection -- 3.1.4. Bottom-Hole Temperatures in Deep Wells -- 3.2. Indirect Temperature Indicators -- 3.2.1. Groundwater Geochemistry -- 3.2.2. Curie Depth -- 3.2.3. Xenoliths -- 3.2.4. Upper Mantle Resistivity -- 3.3. Surface Temperature -- 3.3.1. Offshore -- 3.3.2. Onshore -- 3.3.3. Daily and Seasonal Cycles -- 3.3.4. Climate Changes -- 3.4. Data Integration -- 3.5. Summary -- 4. Thermal Conductivity -- 4.1. Heat Transfer Theory -- 4.1.1. Phonon Conduction -- 4.1.2. Radiation -- 4.2. Mixing Laws -- 4.2.1. Harmonic Mean -- 4.2.2. Arithmetic Mean -- 4.2.3. Geometric or Square-Root Mean -- 4.3. Measurements of Rock Conductivity -- 4.3.1. The Lithological Column and Porosity Data -- 4.3.2. Sample Preparation -- 4.3.3. Steady-State Method -- 4.3.4. Transient Methods -- 4.3.5. Compaction Models -- 4.3.6. Bulk Rock Thermal Conductivity -- 4.3.7. Temperature Correction -- 4.4. Well Log Analysis -- 4.5. Shale Conductivity -- 4.6. Summary -- 5. Thermal Maturity -- 5.1. The Generation of Hydrocarbons from Organic Matter -- 5.1.1. Kerogen -- 5.1.2. Kinetics -- 5.2. Geochemical Indicators of Maximum Palaeotemperature -- 5.2.1. Vitrinite Reflectance (VR) -- 5.2.2. Fluorescence Alteration of Multiple Macerals (FAMM) -- 5.2.3. Thermal Alteration Index (TAI) -- 5.2.4. Conodont Alteration Index (CAI) -- 5.2.5. Clay Mineralogy -- 5.2.6. Pyrolysis (RockEval) -- 5.2.7. Fluid Inclusion Microthermometry (FIM) -- 5.2.8. Molecular Biomarkers -- 5.3. Fission Track Thermochronology (FTT) -- 5.3.1. Choice and Preparation of Samples -- 5.3.2. Analysis and Interpretation -- 5.3.3. Limitations to FTT -- 5.4. Deciding which Thermal Maturity Indicators to Use -- 5.5. Summary -- PART THREE. MODELLING TECHNIQUES -- 6. Heat Flow -- 6.1. Product Method -- 6.2. Bullard Plots -- 6.3. Non-Linear Bullard Plots -- 6.3.1. Reasons for Non-Linear Bullard Plots -- 6.3.2. Climatology -- 6.3.3. Sedimentation -- 6.3.4. Erosion -- 6.3.5. Groundwater Migration -- 6.3.6. Deep Flow of Hot Fluids -- 6.4. Non-Vertical Heat Flow -- 6.4.1. Basement Relief -- 6.4.2. Topography -- 6.4.3. Salt Domes -- 6.5. Heat Flow Correlations -- 6.5.1. Heat Flow and Heat Production -- 6.5.2. Heat Flow and Continental Age -- 6.5.3. Heat Flow and Oceanic Age -- 6.5.4. Heat Flow and Seismic Data -- 6.5.5. Heat Flow and Electrical Conductivity -- 6.6. Summary -- 7. Lithospheric Models -- 7.1. Stable Lithosphere -- 7.1.1. Oceanic Lithosphere -- 7.1.2. Continental Lithosphere -- 7.2. Hot Spots -- 7.2.1. Cause of Hot Spots -- 7.2.2. Thermal Effect of Hot Spots -- 7.3. Subduction Zones -- 7.3.1. Driving Forces -- 7.3.2. Trenches -- 7.3.3. Island Arcs -- 7.3.4. Back-Arc Basins -- 7.3.5. Continental Collision -- 7.4. Extension -- 7.4.1. Instantaneous Pure Shear -- 7.4.2. Constant Pure Shear -- 7.4.3. Simple Shear -- 7.4.4. A Pure-Shear/Simple-Shear Coupled Model -- 7.4.5. The Blanketing Effect of Sediments -- 7.4.6. Underplating -- 7.4.7. Passive Margins -- 7.5. Summary -- 8. Numerical Modelling -- 8.1. Finite Difference Approximations -- 8.2. Relaxation -- 8.2.1. Discretising the Model -- 8.2.2. Boundary Conditions -- 8.2.3. Equilibrium Nodal Temperature -- 8.2.4. Precision -- 8.3. Errors -- 8.3.1. Discretisation Error -- 8.3.2. Round-Off Error -- 8.4. Summary -- 9. Unravelling the Thermal History of Sedimentary Basins -- 9.1. Determining Present Heat Flow Distribution -- 9.2. Understanding the Tectonic History of the Basin -- 9.3. Determining the Stretching Factor, / -- 9.4. Determining the Heat Flow Anomaly and Distribution for -- each ''ime Step -- 9.5. Solving for Temperature Distribution In Crust -- 9.6. Summary -- References -- Index.
Tags from this library: No tags from this library for this title.
Item type Current location Call number Status Date due Barcode Item holds
Book Skoltech library
Shelves
QE509.8 .B43 2001 (Browse shelf) Available 2000006916
Total holds: 0

Includes bibliographical references (p. 303-319) and index.

Machine generated contents note: PART ONE. TIE THERMAL STATE OF THE EARI'TH -- 1. Terrestrial Heat -- 1.1. The Origin of the Earth -- 1.2. The Present Thermal State of the Earth -- 1.3. Basic Heat Flow Terms -- 1.4. Units -- 1.5. IHeat Flow Resources -- 1.6. Summary -- 2. Heat Generation -- 2.1. Radiogenic lHeat -- 2.1.1. Heat Flow Provinces -- 2.1.2. Radiogenic Heat Generation from Well Logs -- 2.1.3. Seismic Correlations -- 2.2. Frictional Heating along Faults -- 2.3. Metamorphic Reactions -- 2.4. Summary -- PART TWO. MEASUREMENT TECHNIQUES -- 3. Thermal Gradient -- 3.1. Direct Measurement Techniques -- 3.1.1. Precision Temperature Logs -- 3.1.2. Deep-Water Probes -- 3.1.3. Borehole Convection -- 3.1.4. Bottom-Hole Temperatures in Deep Wells -- 3.2. Indirect Temperature Indicators -- 3.2.1. Groundwater Geochemistry -- 3.2.2. Curie Depth -- 3.2.3. Xenoliths -- 3.2.4. Upper Mantle Resistivity -- 3.3. Surface Temperature -- 3.3.1. Offshore -- 3.3.2. Onshore -- 3.3.3. Daily and Seasonal Cycles -- 3.3.4. Climate Changes -- 3.4. Data Integration -- 3.5. Summary -- 4. Thermal Conductivity -- 4.1. Heat Transfer Theory -- 4.1.1. Phonon Conduction -- 4.1.2. Radiation -- 4.2. Mixing Laws -- 4.2.1. Harmonic Mean -- 4.2.2. Arithmetic Mean -- 4.2.3. Geometric or Square-Root Mean -- 4.3. Measurements of Rock Conductivity -- 4.3.1. The Lithological Column and Porosity Data -- 4.3.2. Sample Preparation -- 4.3.3. Steady-State Method -- 4.3.4. Transient Methods -- 4.3.5. Compaction Models -- 4.3.6. Bulk Rock Thermal Conductivity -- 4.3.7. Temperature Correction -- 4.4. Well Log Analysis -- 4.5. Shale Conductivity -- 4.6. Summary -- 5. Thermal Maturity -- 5.1. The Generation of Hydrocarbons from Organic Matter -- 5.1.1. Kerogen -- 5.1.2. Kinetics -- 5.2. Geochemical Indicators of Maximum Palaeotemperature -- 5.2.1. Vitrinite Reflectance (VR) -- 5.2.2. Fluorescence Alteration of Multiple Macerals (FAMM) -- 5.2.3. Thermal Alteration Index (TAI) -- 5.2.4. Conodont Alteration Index (CAI) -- 5.2.5. Clay Mineralogy -- 5.2.6. Pyrolysis (RockEval) -- 5.2.7. Fluid Inclusion Microthermometry (FIM) -- 5.2.8. Molecular Biomarkers -- 5.3. Fission Track Thermochronology (FTT) -- 5.3.1. Choice and Preparation of Samples -- 5.3.2. Analysis and Interpretation -- 5.3.3. Limitations to FTT -- 5.4. Deciding which Thermal Maturity Indicators to Use -- 5.5. Summary -- PART THREE. MODELLING TECHNIQUES -- 6. Heat Flow -- 6.1. Product Method -- 6.2. Bullard Plots -- 6.3. Non-Linear Bullard Plots -- 6.3.1. Reasons for Non-Linear Bullard Plots -- 6.3.2. Climatology -- 6.3.3. Sedimentation -- 6.3.4. Erosion -- 6.3.5. Groundwater Migration -- 6.3.6. Deep Flow of Hot Fluids -- 6.4. Non-Vertical Heat Flow -- 6.4.1. Basement Relief -- 6.4.2. Topography -- 6.4.3. Salt Domes -- 6.5. Heat Flow Correlations -- 6.5.1. Heat Flow and Heat Production -- 6.5.2. Heat Flow and Continental Age -- 6.5.3. Heat Flow and Oceanic Age -- 6.5.4. Heat Flow and Seismic Data -- 6.5.5. Heat Flow and Electrical Conductivity -- 6.6. Summary -- 7. Lithospheric Models -- 7.1. Stable Lithosphere -- 7.1.1. Oceanic Lithosphere -- 7.1.2. Continental Lithosphere -- 7.2. Hot Spots -- 7.2.1. Cause of Hot Spots -- 7.2.2. Thermal Effect of Hot Spots -- 7.3. Subduction Zones -- 7.3.1. Driving Forces -- 7.3.2. Trenches -- 7.3.3. Island Arcs -- 7.3.4. Back-Arc Basins -- 7.3.5. Continental Collision -- 7.4. Extension -- 7.4.1. Instantaneous Pure Shear -- 7.4.2. Constant Pure Shear -- 7.4.3. Simple Shear -- 7.4.4. A Pure-Shear/Simple-Shear Coupled Model -- 7.4.5. The Blanketing Effect of Sediments -- 7.4.6. Underplating -- 7.4.7. Passive Margins -- 7.5. Summary -- 8. Numerical Modelling -- 8.1. Finite Difference Approximations -- 8.2. Relaxation -- 8.2.1. Discretising the Model -- 8.2.2. Boundary Conditions -- 8.2.3. Equilibrium Nodal Temperature -- 8.2.4. Precision -- 8.3. Errors -- 8.3.1. Discretisation Error -- 8.3.2. Round-Off Error -- 8.4. Summary -- 9. Unravelling the Thermal History of Sedimentary Basins -- 9.1. Determining Present Heat Flow Distribution -- 9.2. Understanding the Tectonic History of the Basin -- 9.3. Determining the Stretching Factor, / -- 9.4. Determining the Heat Flow Anomaly and Distribution for -- each ''ime Step -- 9.5. Solving for Temperature Distribution In Crust -- 9.6. Summary -- References -- Index.

There are no comments for this item.

Log in to your account to post a comment.